F&L TECHNICAL SALES INC.
  • Home
  • About
  • Principals
    • Better Edge
    • Blue Photon
    • Dorian Tool
    • Hannibal Carbide
    • Heritage Cutter >
      • Brubaker
      • Data Flute
      • Decatur Diamond
      • Weldon
    • Horn USA
    • Mate Workholding
    • mPower Workholding
    • Platinum Tooling
    • Rocky Mountain Twist
    • Techniks Group >
      • Techniks
      • Parlec Inc.
  • News
  • Contact
    • Promotions

Tech Tip: Glass Fiber Composite Machining

4/13/2022

1 Comment

 
Decatur Diamond CVD coated diamond tools are a perfect match for machining glass fiber composites. The very abrasive characteristics of composite materials severely limit the life of both carbide and PCD diamond tools. 
​
GLASS FIBER COMPOSITE MACHINING​
Decatur Diamond carries a large variety of high performance cutting tools optimized for machining composite materials such as carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), and metal matrix composites (MMC).

Tools with diamond on the surface wear longer and have a lower coefficient of friction. These characteristics provide substantial benefit to machining operations.
Because CVD diamond tools last 10-50 times longer than carbide tools, and 3-4 times PCD diamond tools they:
  • Improve dimensional accuracy and consistency of machined parts
  • Greatly reduce number of tool changes, increasing productivity
  • Increase machine utilization
  • Allow for unattended machine operations
  • Quickly pay for themselves

The low friction of CVD diamond tools permit using speeds higher than both carbide and PCD – again contributing to higher productivity – with no degradation of the surface quality or tool life. The consistently sharp edge and lower friction allows delicate, thin wall sections to be machined quickly and precisely. The sharp and long wearing edge also puts lower stresses on the part, fixturing, and equipment. Since CVD diamond has no cobalt binder to break down or abrade away they offer the longest possible tool life.
​

Glass fiber composites can be machined successfully with diamond coated endmills if resin melting and chip evacuation are carefully controlled. Observance of the following guidelines should yield tool lifetimes of approximately 10 times the equivalent carbide tool.

Resin Melting

Speeds and feeds must be adjusted to avoid melting or softening the resin in composite materials. This means that feeds must be 0.001” ipt or greater with larger diameters and speeds should be kept at 400-500 sfm for G10 or FR4 type materials.

As the depth of cut increases the cutting speeds should be reduced to below 400 to minimize heat buildup in the chips. For shallow depths of cut, feeds can be up to 0.010” ipt for 1/2” diameter tools.

​Maximum feed rates are a function of the depth of cut and limited by the tool strength for a given diameter.

Chip evacuation

For slot depths exceeding more than 1/2 the diameter of the endmill the evacuations of chips from the slot becomes extremely important. Failure to adequately remove chips can cause breakage of the carbide under the diamond film on the flute edge and subsequent catastrophic failure of the tool.

The use of 2-flute tools and moderate-to-high feed rates is highly recommended to insure good chip flow. Air flow into the cut and vacuum evacuation of chips from the cutting area are also recommended.

Additional life improvements can be obtained by using a corner radius or ball end tool for the initial cut and then following up with a square end tool with a much shallower cut to achieve the final dimensions.

For side cutting applications there is also an issue with chip evacuation if the radial depth of cut exceeds 1/4 of the tool diameter for a 4-flute tool or 2/3 the diameter for a 3-flute tool.


Maximum tool life and production rates are generally achieved with 2-flute tools operated at high feed rates for most side cutting applications.

Machining Parameters: recommended parameters for sidecutting are listed in the following chart for various flute configurations. Recommendations are based on a cutting speed of 400- 500 sfm and a diameter of the tool greater than or equal to the material thickness. Larger radial depth of cuts are possible if the material is substantially thinner than the tool diameter.
Starting parameters for sidecutting glass fiber composites
Machining Parameters: recommended parameters for slotting are listed in the following chart for various flute configurations. Recommendations are based on a cutting speed of 400-500 sfm and a full width slot which does not penetrate the full thickness of the material thickness. See sidecutting chart for slots which penetrate the full material thickness.
Starting parameters for slotting glass fiber composites
Note: VDOC’s greater than 100% of the tool diameter are listed for informational purposes only and are not recommended for normal operation
Decatur Diamond carries a large variety of high performance cutting tools optimized for machining composite materials such as carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), and metal matrix composites (MMC).

Decatur Diamond products provide the opportunity to machine large parts while minimizing tooling changeovers and ultimately reducing your costs. They can tailor our super hard materials for the challenges at hand with coated CVD, CVD and PCD fabricated tools.  Contact us with quesitons!
1 Comment

    ABOUT

    This is where we publish technical articles, applications stories, tip and tricks, new product announcements and press releases.

    Archive

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018

    Categories

    All
    52/96 Workholding
    Adhesive Workholding
    Aerospace Manufacturing
    Allen Benjamin
    ATC Alignment
    Better Edge
    Blue Photon
    Blue Photon Grip Pallet
    Boring
    Broaching
    BT Holders
    Carbon Fiber
    Case Study
    CAT Holders
    Chamfering
    Coatings
    Collet Nut
    Collets
    Composite Machining
    Countersink
    Deburring
    Decatur Diamond
    Definitions
    Diamond CVD
    Diamond PCD
    Dorian Tool
    Drilling
    Eastec
    End MIll
    EZ Burr
    Fixturing
    Fretting
    Geometry
    GMN Spindle
    Graphite Machining
    Grooving
    GWS Tool Group
    Hannibal Carbide
    Heimatec
    Henninger
    High Speed Whirling
    Horn Supermini
    Horn USA
    Hydraulic Toolholder
    IMTS
    Inserts
    JET Whirling
    ​Knurl Cutting
    Knurl Forming
    Knurling
    Live Tooling
    Mate Workholding
    Medical Device
    Medical Manufacturing
    MegaFORCE
    Modern Industries
    ModLOC
    MPower
    Nexturn Swiss
    North American
    Parlec
    Platinum Tooling
    Practical Machinist
    Pull Studs
    Reamers
    Recondition
    Retention Knobs
    RMT - Rocky Mountain Twist
    Screw Threads
    ShrinkLOCKED
    Slot Cutting
    Slot Milling
    SpeedLOC
    Spindle Repair
    Spindle Wear
    Swiss
    Taps
    Taps: Bottom
    Taps: HSSE
    Taps: Plug
    Taps: Roll Form
    Taps: Taper
    Techniks
    Tech Tip
    Tecnicrafts
    Threadmilling
    Toolholders
    Troubleshooting
    Turbo-Whirling
    Turret
    USMTO
    Weldon Tool
    Workholding
    Zero Point

    RSS Feed

Home
About
Principals
Contact
F&L Technical Sales Logo Square
F&L Technical Sales Inc.
326 Woodland Way
Russell, MA 01071
Established 1999
© 2023 F&L Technical Sales Inc.
All Rights Reserved
site design: Rapid Production Marketing
  • Home
  • About
  • Principals
    • Better Edge
    • Blue Photon
    • Dorian Tool
    • Hannibal Carbide
    • Heritage Cutter >
      • Brubaker
      • Data Flute
      • Decatur Diamond
      • Weldon
    • Horn USA
    • Mate Workholding
    • mPower Workholding
    • Platinum Tooling
    • Rocky Mountain Twist
    • Techniks Group >
      • Techniks
      • Parlec Inc.
  • News
  • Contact
    • Promotions