F&L TECHNICAL SALES INC.
  • Home
  • About
  • Principals
    • Better Edge
    • Blue Photon
    • Dorian Tool
    • Hannibal Carbide
    • Heritage Cutter >
      • Brubaker
      • Data Flute
      • Decatur Diamond
      • Weldon
    • Horn USA
    • Mate Workholding
    • mPower Workholding
    • Platinum Tooling
    • Rocky Mountain Twist
    • Techniks Group >
      • Techniks
      • Parlec Inc.
  • News
  • Contact
    • Promotions

Techniks New Catalog Features New Products: MegaFORCE retention Knobs and Triton Hydraulic Holders

4/13/2021

0 Comments

 
The 2021 Techniks Catalog is available for download now!!  It features the MegaFORCE Retention Knobs that we talked about in our February Article as well as the new Triton Hydraulic Holders. 
Techniks MegaFORCE Retention Knobs
The only thing standing between a job well done and catastrophic failure is the retention knob. MegaFORCE Retention Knobs are designed to deliver superior performance and enhanced safety for the critical connection between your machine spindle and the tool holder.  Retention Knobs are subjected to extreme pulling forces of up to 5,000 ft. lbs. Over time, this stress exploits weaknesses in the retention knob and can lead to breakage.

MegaFORCE Retention Knobs have been designed and manufactured to increase the strength and durability of this critical connection.

​The longer overall length engages threads deeper in the tool holder, reducing taper swelling and maximizing taper/spindle contact for the most rigid connection. MegaFORCE also features a redesigned, blended radii for improved overall strength, making MegaFORCE the strongest high-torque retention knob in the market.
Techniks Triton Hydraulic Chucks
The Triton Hydraulic Holders by Techniks feature a new hydraulic design to provides excellent vibration damping properties, so tools run longer and quieter and produce superior surface finishes. Triton provides 3.5X clamping force of standard hydraulic chucks.

Triton hydarulic chucks are charged with hydraulic fluid in a vacuum chamber to eliminate air and gas from the system. Coupled with a redesigned oil sealing system, Triton chucks are built to provide maximum holding power for years!


You can page view or download the new catalog below!
0 Comments

Don't Take Your Retention Knobs for Granted

2/12/2021

0 Comments

 
by Bernard Martin
Retention Knobs are the critical connection between your machine tool and the tool holder and they are the only thing holding a steep taper tool holder in the machine’s spindle.

​Techniks has recently introduced their MegaFORCE retention knobs that have some rather unique features when compared to standard pull studs.  Before delving into the features of the MegaFORCE pull studs, let's review some things that you may not know, or think about, on a daily basis. 
Retention knob pull stud casues of failure

Retention knobs go through thousands of tool changes which means that they are subjected to the very high pulling forces from the spindle’s drawbar.

This force can be up to 2300 ft. lbs. for 40 taper toolholders and up to 5000 ft. lbs. for 50 taper toolholders. According to Haas, you should expect a service life of about 6000-8000 hours for a retention knob.  

​Most all rotary toolholder manufacturers state that you should be replacing your pull studs at least every three years.

However, if you're running multiple shifts, 24-7, making lots of tool changes, making very heavy cuts with long reach or heavy cutting tools, and/or have ball lock style grippers instead of collet type grippers used on the retention knob, you will probably need to replace your studs at least every six months.

Given the spindle speeds that we are running at to remain competitive, retention knobs are not an item that you want to take a chance on breaking.  I can tell you firsthand that 5 pound toolholder with a drill in it flying out of the spindle at 23,000 RPM is not something you want to experience. 

Metal Fatigue: Why they fail

Pull studs encounter catastrophic failure as a result of metal fatigue. The metal fatigue can be caused by a number of reasons including poor choice of base material, engineering design, machining process, poor heat treatment, and, sometimes, they have just met or exceeded their service life. We're going to dig into each of these reasons below but first let's look at some threading fundamentals.
The threads on your retention knob will stretch slightly when load is applied and the loading borne on each thread is different. When you apply a tensile load on a threaded pull stud, the first thread at the point of connection sees the highest percentage of the load.

The load on each subsequent thread decreases from there, as show in the table. Any threads beyond the first six are purely cosmetic and provide no mechanical advantage. 

Additional threads beyond the sixth thread will not further distribute the load and will not make the connection any stronger. 
Percentage of Load on a Retention Knob Thread
Percentage of Load on each thread of a Retention Knob.
That is why the length of engagement of the thread on a pull stud is generally limited to approximately one to one & a half nominal diameter. After that, there is no appreciable increase in strength. Once the applied load has exceeded the first thread's capacity, it will fail and subsequently cause the remaining threads to fail in succession.

Retention Knob design

Repetitive cycles of loading and unloading subject the retention knob to stress that can cause fatigue and cracking at weak areas of the pull stud.
What are the weak areas of a standard retention knob?  

​For the same reason we put corner radiuses on end mills, sharp corners are a common area of failure for any mechanical device.

​The same holds true with your pull studs:  The sharp angles on the head of the retention knob and at the minor diameter of the threads are common locations of catastrophic material failure.
Retention Knob Metal Fatigue
These are the two weakest points of any retention knob.
The most common failure point for a retention knob is at the top of the first thread and the underside of the pull stud where the grippers or ball bearings of the drawbar engage and draw the toolholder into the spindle.

Remember, bigger Radii are stronger than sharp corners. ​More on that soon.
Styles of Retention Knob for Rotary Toolholders
Styles of MegaFORCE Retention Knobs from Techniks.

Material

Not all retention knobs are made from the same material, however, material alone does not make for a superior retention knob. Careful attention to design and manufacturing methods must be followed to avoid introducing potential areas of failure.

MegaFORCE retention knobs are made from 8620H. AISI 8620 is a hardenable chromium, molybdenum, nickel low alloy steel often used for carburizing to develop a case-hardened part. This case-hardening will result in good wear characteristics.  8620 has high hardenability, no tempering brittleness, good weldability, little tendency to form a cold crack, good maintainability, and cold strain plasticity.

There are some companies making retention knobs from 9310. The main difference is the lower carbon content in the 9310. 9310 has a tad more Chromium, while 8620 has a tad more nickel.  Ultimate Tensile Strength (UTS) is the force at which a material will break. The UTS of 8620H is 650 Mpa (megapascals: a measure of force). The UTS of 9310H is 820 Mpa. So, 9310H does have a UTS that is 26% greater than 8620H.

​That said, Techniks chose 8620 as their material of choice because of the higher nickel content.  Nickel tends to work harden more readily and age harden over time which brings the core hardness higher as the pull stud gets older. The work hardening property of 8620 makes it ideally suited for cold forming of threads on the MegaFORCE retention knobs.


​It should be noted that some companies are using H13. H13 shares 93% of their average alloy composition in common with 9310. 

Rolled Threads vs. Cut Threads

Retention knob cut thread vs rolled thread
A cut thread, image 1, has a higher coefficient of friction due the the cutting process, while a roll formed thread, image 2, has a lower coefficient of friction which means that it engages deeper into the toolholder bore when subjected to the same torque. You will notice that Cutting threads tears at the material and creates small fractures that become points of weakness that can lead to failure. Rolled threads have burnished roots and crests that are smooth and absent of the fractures common in cut threads.
Rolled threads produce a radiused root and crest of the thread and exhibit between a 40% and 300% increase in tensile strength over a cut thread. The Techniks MegaFORCE retention knobs feature rolled threads that improve the strength of the knob by 40%.  
Fette Tri Lobe Thread Rolling
Fette F2 Thread Rolling Head
​In cold forming, the thread rolls are pressed into the component, stressing the material beyond its yield point. This causes the component material to be deformed plastically, and thus, permanently.

There are three rollers in the typical thread rolling head that maintain better concentricity by default than single point cutting of the threads.

​Also, unlike thread cutting, the grain structure of the material is displaced not removed.

Shown here is a Fette F2 Rolling Head cold forming a thread. Note how the three roller forms center and maintain near perfect concentricity of the pull stud shaft.
Rolled threads produce grain flows that follow the contour of the threads making for a stronger thread at the pitch diameter which is the highest point of wear. 

The cold forming process also cold works the material which takes advantage of the nickel work hardening properties of 8620.
By comparison, cut threads interrupt the grain flow creating weak points.
Fette Turning Concepts Thread Rolling Magnaflux
Photo courtesy Mike Roden at Fette Tool. www.turningconcepts.com

megaFORCE GeomEtric design

Overall Length
There are some claims that a longer projection engages threads deeper in the tool holder preventing taper swelling. While a deeper thread engagement can help prevent taper swelling, applying proper torque to the retention knob is an effective way to reduce taper swelling.

An over-tightened retention knob may still cause taper swelling regardless of how deep it engages the threads of the tool holder. Additionally, the longer undercut section above the threads presents a weak point in the retention knob.
MegaForce Retention Knob features vs standard pull stud
Blended Radii
With the new MegaFORCE pull studs, stress risers of sharp angles have been eliminated through the blended radii on the neck where the gripper engages under the head of the pull stud.  

Ground Pilot
There is a ground pilot, underneath the flange, which provides greater stability. The pilot means the center line of the tool holder and pull stud are perfectly aligned.
Techniks MegaFORCE Pull Studs
Techniks MegaFORCE Retention Knobs
Magnetic Particle Tested
Each MegaFORCE retention knob is magnetic particle tested to ensure material integrity and physical soundness. MegaFORCE retention knobs are tested at 2.5X the pulling forces of the drawbar.
MegaFORCE Technical Specifications
  • Material: SAE8620
  • All knobs are case carbrized, hardened, and tempered to:
    • Case depth: 0.025” – 0.030”
    • Surface hardness: HRc 56-60
    • Core hardness: HRc 44 minimum
Torque Specs
The following are the guidelines for torquing your pull studs according to Techniks.
  • BT 30 36 ft. lbs.
  • ISO 30 - 36 ft. lbs.
  • 40 taper - 76 ft. lbs.
  • 50 Taper - 100 ft. lbs.

​Retention Knob Best Practices

In order to maximize the life of your retention knob and prevent catastrophic failure here are some technical tips to keep your shop productive and safe.
  • Regularly inspect retention knobs for signs of wear. Wear may appear as dimples or grooves under the head or visible corrosion anywhere on the retention knob.
  • If the retention knob demonstrates any signs of wear replace it immediately. 
  • Make sure to properly torque the retention knob to the manufacturer’s specifications. Use a torque wrench and retention knob adapter to ensure proper torque.
Broken Pull Stud
Remember to change out your pull studs before the end of their service life to prevent this kind of catastrophic failure.
  • Overtightening can overly stress the retention knob leading to premature failure and can cause the tool holder taper to swell leading to a poor fit between the machine spindle and the tool holder.
  • Apply a light coat of grease to the retention knob MONTHLY to lubricate the drawbar. If you use through-spindle coolant (TSC), apply grease to the retention knobs WEEKLY.

indication marks on Pull Studs
​is not normal

Damaged Retention Knob
There have been some who claim that drawbar gripper fingers and/or ball marks that appear on retention knob head after several tool changes is normal.

It is NOT.  THAT IS FALSE. 


According to Haas CNC, ball or gripper marks on the edge of the pull stud indicate that the drawbar does not open completely. If you see these indication marks you should check your drawbar and replace these pull studs immediately.

Special thanks for Greg Webb at Techniks and Mike Roden from Fette Tools/ Turning Concepts, for providing technical insights. 
0 Comments

Techniks Introduces ShrinkLocked Rotary Toolholders

9/15/2020

1 Comment

 
by, Bernard Martin
Techniks Shrink Locked Rotary Toolholder
As carbide end mills gain higher and higher speeds and metal removal rates there has also been a trend by round tool manufacturers to tighten up the tolerances on both the cutting diameter and the shank diameter to improve concentricity. At the same time, shrink fit holders have become more and more popular because they hold a tighter concentricity as well.  To achieve this both the shank and the bore now have similar surface finishes and this has led to a problem  The tools pull out in the cut.

Shrink fit holders are the most accurate for TIR as the toolholder engages completely around round shank tools with a bore tolerance of -0.0001" to  -0.0003".  As high performance end mills have tightened shank tolerances to the same range of -0.0001" to  -0.0003" they have used finer and finer grain grinding wheels which give the shanks a 'shiny' appearance. 

Shiny means that the superfinished shank has a lower coefficient of friction. So, although the TIR is tighter, the shank is more "slippery".   End mills traditionally had surface finish of about 8 μin on the tool shank. But that's changed.  It's been recommended that tool shanks used in shrink fit holders should not have a finish finer than 16 μin. for optimum holding power, but tell that to the guy who just superfinished the end mill to a super cocncentric tolerance that you don't want it looking that good.

Everyone know that the last thing you want is for the end mill to slip in the middle of a heavy cut or on the finishing pass of a high tolerance part.  These 'hi performance' end mills, often times have higher helix angles which are great for ejecting chips but also create a higher pull out force on that slippery shank. And reducing the helix angle is not the answer.

We  already know that the gripping pressure is a function of the interference between the tool shank  and the shrink fit toolholder bore. Most shrink fit holders have a already bore surface finish of between 12 μin. and 16 μin.  So they are ground to a very high tolerance and have about the same surface finish as the toolholder shank.

End mill manufacturers and machinist have tried a variety of methods over the years to stop the tools from pulling out. This has ranged from grit blasting the shank to rubbing chalk on the shank, but most everyone in the industry has felt that the problem really needs to be addressed by the longer life toolholder rather than the replaceable cutting tool.
That's the problem that Techniks wanted to address. Techniks claims that their "proprietary non-slip TTG594 compound virtually fuses the tool shank with the shrink fit toolholder."

ShrinkLOCKED Toolholders eliminate cutting tool pull-out and provide 4X the friction drive force compared to un-treated shrink holders.
  • No modifications to your tool holder required.
  • Increase productivity with higher feed rates.
  • No impact on concentricity.
Techniks toolholder Shrink locked blast Diagram
It’s not just a rougher bore finish that enhances the holding power. TTG-594 is a compound that has a much higher Brinell hardness than carbide so it can “bite” into the tool shank. But this does not affect the ability to perform tool changes.

Techniks arrived at their 4x the holding power comes from torsion testing vs. a standard shrink fit toolholder. They used a ¾” carbide gage pin in a standard holder and found the torque at which the tool will spin in the bore.

They then tested the ShrinkLOCKED holder using the same test.

According to Greg Webb, at Techniks,
"We actually could not find the point at which the tool would spin in the ShrinkLOCKED holder as we broke the carbide gage pins at 4x+ times the torque of the standard holder. The holding power is greater, we just have not found a way to measure this, so we kept our claims conservative at 4x."
shrink-locked Techniks
1 Comment

Coolant Supply Options in Steep Taper Toolholders

11/14/2018

1 Comment

 
Tech Tip: Techniks and Parlec
Getting coolant through the toolholder and to your cutting tool can be accomplished in two ways with Parlec and Techniks toolholders. Coolant is delivered from the spindle by two methods:
  • Through the Spindle
  • Through the Flange Entry (DIN B)

Through Spindle Coolant Delivery

Through holes are standard in all Parlec and Techniks toolholders. Solid and through hole retention knobs are
available to accommodate coolant and non-coolant applications. This is the most common method of coolant delivery.

The coolant is delivered
from the spindle through the knob and exits through the cutting tool. Coolant through knobs are sold separately.
Picture

Through-Flange/ DIN B Coolant Delivery

Combined with solid retention knobs "Through the Flange" holes go through the flange to deliver the coolant from the spindle.

This is sometimes referred to as "DIN B" or "Form B". 

Picture
With Screws:Coolant delivered from the spindle through the knob and exits through the cutting tool. Coolant through knobs sold separately.
Picture
Without Screws:Coolant delivered from the spindle through the flange and exits through the cutting tool. Solid knob required. Solid knobs sold separately.
Through Flange/ Form B  is an available standard for many tools and available as a standard modification for most toolholders.

Form B convertible or AD/B (BC) is available in many sizes. The AD/B (BC) style can be used as either through the spindle , as supplied, or converted to Form B, through the flange. Flange entry is enabled by removing two screws
1 Comment

CAT and BT Taper Specifications

5/16/2018

1 Comment

 
Tech Tip: Techniks and Parlec
We have had several inquiries regarding steep taper rotary toolholders specifications.  Below you will find all of the technical reference information related to V-Flange Tolling Tapers and dimensions.
CAT ASME Rotary Toolholder Specifications
CAT V Flange Taper Specifications
  • All Parlec and Techniks Rotary toolholders meets or exceeds ASME B5.50-2009 specifications and all current specification updates except where improvements are made for high speed operation.
  • All Parlec and Techniks CAT tooling incorporates ParSymmetry for balance and chip hole for identification.
About the ASME B5.50 – 2009 Standard
This Standard pertains to the standardization of a basic tool holder shank and retention knob for computer numerically-controlled machining centers with automatic tool changers. The requirements are intended to provide tool holder interchangeability between machining centers with automatic tool changers of various types.

The dimensions for cone-angle
control are in accordance with the International Standard ISO-1947. This Standard will improve the understanding of the “CAT” toolholder, its associated components, and nominal operational values. It unifies the principle components of the basic machine tool holder interface—toolholders hank and spindle receiver geometry, pull stud, and conical taper information--into a single-source reference, providing instant access to information.

This
new information also eliminates ambiguities and establishes absolutes for all aspects of the toolholder/spindle interface.Intended forthose involved in the design, manufacture, use, or maintenance of steep-taper (7:24) toolholders and their ancillary components.
BT JIS  Rotary Toolholder Specifications
BT Taper Specificationsƒ
  • All Parlec and Techniks Rotary toolholders meets or exceeds JIS B6339-1986 specifications. ƒ
  • Taper is toleranced so that any error increases rate of taper only. Refer to Manufacturing Specifications for tolerance specifications.
BT-40 Shank is also known as: JMTBA MAS-403 "BT", JIS B 6339 - 1986, JIS B6339 - 1992, and ISO 7388/1 - 1983.

The spindle interface JIS B 6339 as the traditional interface for milling spindles distinguishes itself through it robust design. Its field of application ranges from fine machining to heavy duty roughing. The tool holder is pulled in the milling spindle with the help of an additional pull stud.

The centering takes place via the taper contact. Therefore, the JIS B 6339 interface is primarily suitable for applications with a spindle speed of up to 12,000 rpm in an unbalanced condition.
1 Comment

Evaluating Your Rotary Toolholders for Wear

3/14/2018

0 Comments

 
Tech Tip: Techniks and Parlec
Modern CNC machines feature high-capacity tool changers that automatically swap toolholders in and out of the spindle as needed, by means of a high speed swing arm or a rotary carousel. Periodically, toolholders should be examined for wear and if necessary replaced to maintain cutting performance.

New operators should be taught how to properly evaluate toolholders so they can recognize when toolholders need to be replaced to prevent premature cutting tool failure, or even expensive damage to the spindle.
Tool Life loss from Runout GraphYou lose 10% of cutting tool life for every “tenth” (0.0001”) of runout
Many operators do not know why it is necessary to replace their tooling, or have the experience to tell when it is time to do so.

Determining if toolholder components need to be replaced is not a difficult task, but does require that the operator knows what to look for.

A worn out holder will not provide good accuracy and will
quickly wear out your cutting tools. Worn tooling causes poor surface finish, and may damage your spindle.

This article will discuss the following types of causes and types of wear.
  1. Spindle Mouth Wear
  2. ATC Alignment Issues
  3. Taper Wear / Fretting

Checking For Spindle Mouth Wear

A worn spindle can cause runout issues that affect tool-holder accuracy and reduce cutting quality and productivity. This is a condition known as bell mouthing. If toolholder issues can be eliminated by bench checking T.I.R., then the source of the problem is often a worn out spindle mouth. A trained professional will be required to check and repair bell mouthing.
Techniks USA Measuring Runout
T.I.R. (total indicator runout) is the measurement of axial deflection of the cutting tool in the toolholder assembly. Techniks toolholders are manufactured to minimize runout and extend cutting tool life.

ATC Alignment Issues

It’s crucial to maintain proper ATC swing arm alignment. If the ATC does not insert the toolholder perfectly, damage to the spindle and toolholder may result.

Poor cutting
tool performance and reduced tool life will be evident.
Automatic Tool Changer  ATC Alignment Issues

Taper Wear / Fretting

Check the taper for signs of wear or damage where it contacts the spindle mouth. Any problems with the taper will have a direct effect on machining accuracy. If there are any imperfections on the taper, the toolholder should not be used. If noticeable marking is evident on the taper a condition called fretting may be occurring.
Fretting happens when two steel parts (holder and spindle mouth) are rubbing against one another. 

Once a toolholder is fretted it can pass the fretting to other spindles.  A spindle with fretting can pass the fretting to other toolholders.  Fretting in this sense if akin to sexually transmitted diseases and it should be considered just a seriously.

Rotary Toolholder Fretting
Fretting is evident from the bronze discoloration on the toolholder taper. It will also be present on the spindle. It can spread to other toolholders.
Fretting is believed to be caused by imperfect mating between tooholder taper and spindle, creating vibration and heat which develops the fretting. It is visible as small copper colored pits or marks on the taper. This is evidence that the toolholder is becoming worn. Fret-ting is easily mistaken for rust, but it is not. Once noticeable fretting develops the toolholder should be replaced. New toolholders that quickly develop fretting, or toolholders that stick in the spindle, may indicate a spindle that needs to be reground.
0 Comments

    ABOUT

    This is where we publish technical articles, applications stories, tip and tricks, new product announcements and press releases.

    Archive

    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018

    Categories

    All
    52/96 Workholding
    Adhesive Workholding
    Aerospace Manufacturing
    Allen Benjamin
    ATC Alignment
    Blue Photon
    Blue Photon Grip Pallet
    Boring
    Broaching
    BT Holders
    Carbon Fiber
    Case Study
    CAT Holders
    Chamfering
    Coatings
    Collet Nut
    Collets
    Composite Machining
    Countersink
    Deburring
    Decatur Diamond
    Definitions
    Diamond CVD
    Diamond PCD
    Dorian Tool
    Drilling
    Eastec
    End MIll
    EZ Burr
    Fixturing
    Fretting
    Geometry
    GMN Spindle
    Graphite Machining
    Grooving
    GWS Tool Group
    Hannibal Carbide
    Heimatec
    Henninger
    High Speed Whirling
    Horn USA
    Hydraulic Toolholder
    IMTS
    Inserts
    JET Whirling
    ​Knurl Cutting
    Knurl Forming
    Knurling
    Live Tooling
    Mate Workholding
    Medical Device
    Medical Manufacturing
    MegaFORCE
    Modern Industries
    ModLOC
    MPower
    Nexturn Swiss
    North American
    Parlec
    Platinum Tooling
    Practical Machinist
    Pull Studs
    Reamers
    Retention Knobs
    RMT - Rocky Mountain Twist
    Screw Threads
    ShrinkLOCKED
    Slot Cutting
    Slot Milling
    SpeedLOC
    Spindle Repair
    Spindle Wear
    Swiss
    Taps
    Taps: Bottom
    Taps: HSSE
    Taps: Plug
    Taps: Roll Form
    Taps: Taper
    Techniks
    Tech Tip
    Tecnicrafts
    Threadmilling
    Toolholders
    Troubleshooting
    Turbo-Whirling
    Turret
    USMTO
    Weldon Tool
    Workholding
    Zero Point

    RSS Feed

Home
About
Principals
Contact
F&L Technical Sales Logo Square
F&L Technical Sales Inc.
326 Woodland Way
Russell, MA 01071
Established 1999
© 2023 F&L Technical Sales Inc.
All Rights Reserved
site design: Rapid Production Marketing
  • Home
  • About
  • Principals
    • Better Edge
    • Blue Photon
    • Dorian Tool
    • Hannibal Carbide
    • Heritage Cutter >
      • Brubaker
      • Data Flute
      • Decatur Diamond
      • Weldon
    • Horn USA
    • Mate Workholding
    • mPower Workholding
    • Platinum Tooling
    • Rocky Mountain Twist
    • Techniks Group >
      • Techniks
      • Parlec Inc.
  • News
  • Contact
    • Promotions